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Abstract: Let H be a Hilbert space with the norm || - || and A(¢),(0 < ¢ < T)
be positive self-adjoint unbounded operators from D(A(t)) C H to H. In the
paper, we propose a regularization method for the ill-posed backward parabolic
equation with time-dependent coefficients

wt Au=0, 0<t<T,
|u(T) — fll <e, fe€He>0.

A priori and a posteriori parameter choice rules are suggested which yield errors
estimates of Holder type. Our errors estimates improve the related results in [4].

1 Introduction

Let H be a Hilbert space equipped the inner product (-, -) and the norm |||, A(t) (0 <
t<T):D(A(t)) C H— H be positive self-adjoint unbounded operators on H. Let f in H
and € be a given positive number. We consider the backward parabolic problem of finding
a function v : [0,T] — H such that

(1)

uw+Atu =0, 0<t<T,
[u(T) = fll <e

This problem is well-known to be severely ill-posed [8], [9]. Therefore, the stability
estimates and the regularization methods [11] are required.

It was proved in [4] that, if u(t) is a solution of the equation u; + A(t)u =0, 0 <t < T,
then there exists a non-negative function v(¢) on [0,7] such that

lu(®)]| < ella(T)["O ()1, vt € [0,T], (2)

where c is a positive constant. Furthermore, a priori and a posteriori parameter choice rules
were suggested yielding the errors estimates of Holder type with an order @ In this paper,
we investigate the regularization of the problem (1). The main tools will be based on the
method of non-local boundary value problems [1]-[6] and the parameter choice rules of a
priori and a posteriori. We then proved that these parameter choice rules yield the errors

estimates of Holder type with an order v(¢). This is an improvement of the related results
in [4].
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2 Preliminaries

Let us recall the following result from Theorem 2.5 in [4].

Suppose that
(i) A(t) is a self-adjoint operator for each ¢, and u(t) belongs to domain of A(t)
(ii) If u(t) is a solution of the equation

Lu::%‘+A(t>u:o, 0<t<T
then for some non-negative constants k, ¢, it holds that
—% (Atyu(t), ult)) = 2| A@)ul® = c((A®#) + k)ult), u(t)) .
Let a1(t) be a continuous function on [0, 7] satisfying a1 (t) < ¢,Vt € [0,7] and
—% (Atyu(t), ult)) = 2| A@)ul® — ar(t) ((A®) + k)ult), u(t)) .

For all ¢t € [0, 77, let

_ as(t)
Then
()| < O |u(T)]|"Ou()]*®), vt € [0,T]. (4)

3 Main results

In this section, we make the following assumptions for the operators A(t) [12; pp. 134-
135].
(Hp) For 0 < t < T, the spectrum of A(t) is contained in a sectorial open domain

o(A() C Tu = N eC; [argh| <w), 0<t<T, (5)
with some fixed angle 0 < w < 7, and the resolvent satisfies the estimate

M
I = A@) STP AE Yy, 0<ELT, (6)
with some constant M > 1.
(H2) The domain D(A(t)) is independent of ¢ and A(t) is strongly continuously differ-
entiable [10; p. 15].

(H3) For all t € [0,T], A(t) is a positive self-adjoint unbounded operator and if u(t) is
a solution of the equation Lu = a +A(t)u =0, 0<t<T,then there are a non-negative

constant k£ and a continuous function on [0, 77, a;(t) such that

d

— o (ADu(®), u(®)) = 20 Al — a1 (8) ((A®#) + R)u(t), u(®)) - (7)
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Remark 3.1. (See [4]) If assumptions (H;) and (Hz) are satisfied, then
IA@)(A@®) ™ = A(s) I S NJt = s, 0< 5,8 < T, (8)
for some constant N > 0.

To regularize (1), following Fritz John [7], we should impose some prescribed bound for
u(0). Namely, in this section we suppose that there is a positive constant E such that

[u(0)|| < E. (9)
Now, let

© {j( t)j if —T<t<0, 10)
(t), if0<t<T.
Then B(t) = B(—t),Vt € [-T,T]. Furthermore, B(t), (=T <t < T') are also positive self-
adjoint unbounded operators, the domain D(B(t)) is independent of ¢t and B(t), (-1 <
t < T) also satisfy the conditions (5), (6) and (8).
In this paper, the ill-posed parabolic equation backward in time (1) subjects to the
constraint (9), is regularized by the problem

Btv=0, -T<t<T,
{vt—l— (t)v (11)

av(=T) +v(T) = f,

where « is a positive number.

From now on, for clarity, we denote the solution of (1), (9) by u(t), the solution of the
problem (11) by v(t) and z(t) = u(t) — v(t), Vt € [0,T]. We have z(t) is the solution of the
problem

A = T
{zt—l- (t)z=0, 0<t<T, (12)

2(0) = u(0) — v(0).
Theorem 3.2. The problem (11) is well-posed.
Proof. The proof of this theorem is an application of Lemma 3.3 and Lemma 3.4 below. [
Lemma 3.3. If v(t) is a solution of (11), then
a?[lo(=1)|* + 2a + Do(D)II* < |1 £]I°

and )
o)l < 5HfH,Vt € [-T,T].

Proof. We have

I£1I* = (av(=T) + o(T), av(=T) + v(T))
= o®[lo(=D)|* + [lo(D)I* + 20 (v(=T), v(T)) - (13)
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Set h(t) := (v(—t),v(t)),t € [-T,T]. We see that
R'(t) =0,Vt € (=T,T).

Therefore, h is a constant. This implies that ~A(0) = h T). Thus, (v(=T), (T)> v (0)]1?.
Set p(t) := ||v(t)||?, t € [-T,T]. Then p'(t) t e (=T,7).
This implies that p (0) > p(T"). Therefore,

||
[\3/\
—
oy
—~
~
~
<
~
~
<
—~
~—
~
N
=
<

((=T),0(T)) = [lv (0)[|* = [[o(T)|>
It follows from (13) and the positivity of a that
£ = o [lo(=T)I” + (2 + 1) o (T)|*.
On the other hand, we have ||v(t)||? = p(t) < p(—T) = ||[v(=T)||?, ¥t € [T, T)]. Therefore
1
lo@®)] < [Jo(=T)| < EHfH,Vt € [-T,T]. The lemma is proved. O
Lemma 3.4. There exists a unique solution of the problem (11).

Proof. Since B(t) (=T <t < T') satisfies the assumptions (5),(6) and (8), due to Theorem
3.9 in [12; p. 147], there exists an evolution operator U(t) (=T < ¢t < T') which is a bounded
linear operator on H such that if v(t) is a solution of the problem v;+B(t)v = 0,-T <t < T,
then v(t) = U(t)v(=T).

Let h(t) = (v(—t),v(t)), Vt € [-T,T]. By direct calculation we see that h'(t) = 0,7t €
(=T,T). Therefore, h is a constant. This implies that h(T") = h (0). Thus,

= [lo (0"

Therefore,
(U(T)yo(=T),v(=T)) = (v(T),v(=T)) = [[v(0)|* > 0
This implies that the operator U(T') is positive. Therefore the operator ol + U (T') is invert-

ible for all a > 0. Finally, set v(t) = U(t)(al +U(T))"1f, t € [T, T), by direct calculation,
we see that v(t) is a unique solution of the problem (11). O

Theorem 3.5. The following inequality holds for all @ > 0

2 a 2
o (1Ol -5 ) +IADIE <2+ 5 (1)

Proof. Let q(t) = (v(—t),z(t)), Vt € [0,T]. By direct calculation we see that ¢'(t) = 0,Vt €
(0,T). Therefore, g is a constant. This implies that ¢(T') = ¢ (0). Thus,

(0(=T), 2(T)) = (v(0), 2(0)) .

We have
av(=T) — 2(T) = f —u(T).
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Therefore, we obtain

o 2 « 2
24 07— + 2
a 2
= flaw(~T) - 2(T)|* + 22~
a 2
= 2 o(~T) | — 20 {o(~T), (7)) + (D> + 2~
a 2
= ?o(~T) | — 20 0(0), 2(0)) + |=(T) | + 2T~
aE?
2

= o?[lo(=T)[* + 22| 2(0)|* = 2 (u(0), 2(0)) + [|2(T)||* +

a 2
> 20 2(0)| — 20 (u(0), (0)) + (T + *T-
aE?

2

= a?o(=T)|I* + 2a (2(0) — u(0), 2(0)) + [|=(T)|* +

aF?
2

> 20]|2(0)[1* = 2a/[u(0)|[12(0)]| + [|=(T)|* +

aF?

> 2a]|2(0)[]* = 20 E]|2(0)] + |(T)II* + =

2
=2 (01 - 5 ) + 1D

The theorem is proved. ]

3.1 A priori parameter choice rule

Theorem 3.6. Suppose that u(t) is a solution of the problem (1) subjects to the constraint
2

(9), and v(t) is the solution of the problem (11). Then by choosing o = a <%> , (a>0),

we obtain, for all t € [0,T],

) 1—u(t)
u(t) — v(t)]| < H—FT® 1 +% (t) <; N % (; N i)) V(1) v (),
where v(t) is defined by (3). In the case of a = 1, we have
Ju(t) — oD < SeHFTHOLO B0, v ¢ [0,7).
Proof. Using (4), we obtain

=) < M F @) O 2(0) . (15)
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On the other hand, from (14) we have

2
J0)IP < 20 (=001 - 5 ) + 1D

< 2+aE2
€ 5
2
= <1+g) g
or
a
|2(T)] < e 1+§. (16)

Furthermore, we have

This implies that

Therefore
E 1/1 1
—Z<E=(=+=
01 - 5 <55 (5+3)
or
1 1/1 1
<z S ) ) E 1
=) (2+ 2Q+ﬁ)> (17)
The proposition of Theorem 3.6 follows immediately from (15), (16) and (17). O

3.2 A posteriori parameter choice rule

In this section, we denote by v, (t) the solution of the problem (11).

Theorem 3.7. Suppose that € < ||f||. Then there exists a unique number az > 0 such that
[vae (T') = fIl = €. (18)

Further, if u(t) is a solution of the problem (1) satisfying (9), then

[u(t) = va, (£)]| < 2Dkt FTvE (0 pl=vt) v e [0, T). (19)
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Proof. Let p(a) = ||va(T) — f|| = a||jva(=T)||, Yo > 0. By similar argument as in [4], we
conclude that p is a continuous function, lim p(a) = 0, lim p(a) = ||f|, and p is a
a—0t a—r—+00

strictly increasing function. This implies that there exists a unique number a. > 0 which
satisfies (18).

We now establish error estimate of this method. Let z(t) = u(t) — v, (t), t € [0,T]. We
have

12D = N[u(T) = va ()| = |(w(T) = f) = (va (T) = f)|
< NwlT) = flI + [va (T) = fII < 2e. (20)

Put g, = vo.(—T"). We have
Qela, + Va, (T) = f

and

Therefore, we obtain

aE? aF?
e+ ——2|f—u@|*+—=—
2 2
a.F?
= [|acga. — Z(T)H2 + 22

a.E?
= aZ||ga.lI” = 2ac (g, 2(T)) + [|2(T)|I* + ET
a.E?
= (0e) — 20 ((u(0), 2(0)) — 2(0)|?) + =(D)]> +
a.E?
= £ 4 20 2(0)]2 ~ 20 (u(0), 2(0)) + (D) + X5
2

> 20 [[2(0)]2 — 20 (u(0), 2(0)) + 222 4 &2

2
aF?
> 20c]|2(0)* = 2ac[[u(O)[[l2(0) | + =5 — +
E\2
This implies that
E\?  a.E?
sac (01 - 5 ) <25
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1z(0)]] < E. (21)
From (4), (20) and (21), we have

@)l < MO 2(T) |0 2(0) '+
< ekt—kTy(t)(28)1/(t)E1—1/(t)

_ 21/(15)ekt—kTV(t)gl/(t)El—u(t)’ Vt e [O, T]

[u(t) = va. (1)l

The theorem is proved. O
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TOM TAT

MOT PHUONG PHAP CHINH HOA CHO PHUONG TRINH
PARABOLIC VOI HE SO PHU THUQOC THOI GIAN

Cho H la khong gian Hilbert v6i chuan || - || va A(t), (0 <t < T) la toan tit khong
bi chén x4c dinh duong tit D(A(t)) C H vao H. Trong bai béo nay, ching t6i dé xuat mot
phuong phap chinh héa cho phuong trinh parabolic ngude thoi gian véi hé sd6 phu thuoc
thoi gian

uw+At)u=0, 0<t<T,
|u(T) - fll <e, feHe>0.

Cac luat chon tham s6 tién nghiém v hau nghiém duge dé xuat kéo theo cac danh gia sai
s6 kiéu Holder type. Cac danh gia sai s6 nay la sy cai tién mot vai két qua trong bai bao

[4].
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